Compatible finite element methods for geophysical fluid dynamics

Auteurs : Colin J. Cotter

correction of some typos
Licence : CC BY 4.0

Résumé : This article surveys research on the application of compatible finite element methods to large scale atmosphere and ocean simulation. Compatible finite element methods extend Arakawa's C-grid finite difference scheme to the finite element world. They are constructed from a discrete de Rham complex, which is a sequence of finite element spaces which are linked by the operators of differential calculus. The use of discrete de Rham complexes to solve partial differential equations is well established, but in this article we focus on the specifics of dynamical cores for simulating weather, oceans and climate. The most important consequence of the discrete de Rham complex is the Hodge-Helmholtz decomposition, which has been used to exclude the possibility of several types of spurious oscillations from linear equations of geophysical flow. This means that compatible finite element spaces provide a useful framework for building dynamical cores. In this article we introduce the main concepts of compatible finite element spaces, and discuss their wave propagation properties. We survey some methods for discretising the transport terms that arise in dynamical core equation systems, and provide some example discretisations, briefly discussing their iterative solution. Then we focus on the recent use of compatible finite element spaces in designing structure preserving methods, surveying variational discretisations, Poisson bracket discretisations, and consistent vorticity transport.

Soumis à arXiv le 26 Fév. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.