Graph-based Knowledge Distillation: A survey and experimental evaluation
Auteurs : Jing Liu, Tongya Zheng, Guanzheng Zhang, Qinfen Hao
Résumé : Graph, such as citation networks, social networks, and transportation networks, are prevalent in the real world. Graph Neural Networks (GNNs) have gained widespread attention for their robust expressiveness and exceptional performance in various graph applications. However, the efficacy of GNNs is heavily reliant on sufficient data labels and complex network models, with the former obtaining hardly and the latter computing costly. To address the labeled data scarcity and high complexity of GNNs, Knowledge Distillation (KD) has been introduced to enhance existing GNNs. This technique involves transferring the soft-label supervision of the large teacher model to the small student model while maintaining prediction performance. This survey offers a comprehensive overview of Graph-based Knowledge Distillation methods, systematically categorizing and summarizing them while discussing their limitations and future directions. This paper first introduces the background of graph and KD. It then provides a comprehensive summary of three types of Graph-based Knowledge Distillation methods, namely Graph-based Knowledge Distillation for deep neural networks (DKD), Graph-based Knowledge Distillation for GNNs (GKD), and Self-Knowledge Distillation based Graph-based Knowledge Distillation (SKD). Each type is further divided into knowledge distillation methods based on the output layer, middle layer, and constructed graph. Subsequently, various algorithms' ideas are analyzed and compared, concluding with the advantages and disadvantages of each algorithm supported by experimental results. In addition, the applications of graph-based knowledge distillation in CV, NLP, RS, and other fields are listed. Finally, the graph-based knowledge distillation is summarized and prospectively discussed. We have also released related resources at https://github.com/liujing1023/Graph-based-Knowledge-Distillation.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.