Completeness for categories of generalized automata
Auteurs : Guido Boccali, Andrea Laretto, Fosco Loregian, Stefano Luneia
Résumé : We present a slick proof of completeness and cocompleteness for categories of $F$-automata, where the span of maps $E\leftarrow E\otimes I \to O$ that usually defines a deterministic automaton of input $I$ and output $O$ in a monoidal category $(\mathcal K,\otimes)$ is replaced by a span $E\leftarrow F E \to O$ for a generic endofunctor $F : \mathcal K\to \mathcal K$ of a generic category $\mathcal K$: these automata exist in their `Mealy' and `Moore' version and form categories $F\text{-}\mathsf{Mly}$ and $F\text{-}\mathsf{Mre}$; such categories can be presented as strict 2-pullbacks in $\mathsf{Cat}$ and whenever $F$ is a left adjoint, both $F\text{-}\mathsf{Mly}$ and $F\text{-}\mathsf{Mre}$ admit all limits and colimits that $\mathcal K$ admits. We mechanize some of of our main results using the proof assistant Agda and the library `agda-categories`.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.