Spawrious: A Benchmark for Fine Control of Spurious Correlation Biases
Auteurs : Aengus Lynch, Gbètondji J-S Dovonon, Jean Kaddour, Ricardo Silva
Résumé : The problem of spurious correlations (SCs) arises when a classifier relies on non-predictive features that happen to be correlated with the labels in the training data. For example, a classifier may misclassify dog breeds based on the background of dog images. This happens when the backgrounds are correlated with other breeds in the training data, leading to misclassifications during test time. Previous SC benchmark datasets suffer from varying issues, e.g., over-saturation or only containing one-to-one (O2O) SCs, but no many-to-many (M2M) SCs arising between groups of spurious attributes and classes. In this paper, we present \benchmark-\{O2O, M2M\}-\{Easy, Medium, Hard\}, an image classification benchmark suite containing spurious correlations between classes and backgrounds. To create this dataset, we employ a text-to-image model to generate photo-realistic images and an image captioning model to filter out unsuitable ones. The resulting dataset is of high quality and contains approximately 152k images. Our experimental results demonstrate that state-of-the-art group robustness methods struggle with \benchmark, most notably on the Hard-splits with none of them getting over $70\%$ accuracy on the hardest split using a ResNet50 pretrained on ImageNet. By examining model misclassifications, we detect reliances on spurious backgrounds, demonstrating that our dataset provides a significant challenge.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.