Non-Vacuum Solutions, Gravitational Collapse and Discrete Singularity Theorems in Wolfram Model Systems

Auteurs : Jonathan Gorard

109 pages, 62 figures

Résumé : The celebrated geodesic congruence equation of Raychaudhuri, together with the resulting singularity theorems of Penrose and Hawking that it enabled, yield a highly general set of conditions under which a spacetime (or, more generically, a pseudo-Riemannian manifold) is expected to become geodesically incomplete. It is a non-trivial question to ask whether (and to what extent) there exist equivalently general conditions under which one expects discrete spacetimes to become geodesically incomplete, and how these conditions might differ from those in the continuum. This article builds upon previous work, in which the conformal and covariant Z4 (CCZ4) formulation of the Cauchy problem for the Einstein field equations, with constraint-violation damping, was defined in terms of Wolfram model evolution over discrete (spatial) hypergraphs for the case of vacuum spacetimes, and proceeds to consider a minimal extension to the non-vacuum case by introducing a massive scalar field distribution, defined in either spherical or axial symmetry. Under appropriate assumptions, this scalar field distribution admits a physical interpretation as a collapsing (and, in the axially-symmetric case, uniformly rotating) dust, and we are able to show, through a combination of rigorous mathematical analysis and explicit numerical simulation, that the resulting discrete spacetimes converge asymptotically to either non-rotating Schwarzschild black hole solutions or maximally-rotating (extremal) Kerr black hole solutions, respectively. Although the assumptions used in obtaining these preliminary results are very strong, they nevertheless offer hope that a more general, perhaps ultimately ``Penrose-like'', singularity theorem may be provable in the discrete spacetime case too.

Soumis à arXiv le 10 Mar. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.