On a fundamental problem in the analysis of cancer registry data
Auteurs : Sho Komukai, Satoshi Hattori, Bernard Rachet
Résumé : In epidemiology research with cancer registry data, it is often of primary interest to make inference on cancer death, not overall survival. Since cause of death is not easy to collect or is not necessarily reliable in cancer registries, some special methodologies have been introduced and widely used by using the concepts of the relative survival ratio and the net survival. In making inference of those measures, external life tables of the general population are utilized to adjust the impact of non-cancer death on overall survival. The validity of this adjustment relies on the assumption that mortality in the external life table approximates non-cancer mortality of cancer patients. However, the population used to calculate a life table may include cancer death and cancer patients. Sensitivity analysis proposed by Talb\"{a}ck and Dickman to address it requires additional information which is often not easily available. We propose a method to make inference on the net survival accounting for potential presence of cancer patients and cancer death in the life table for the general population. The idea of adjustment is to consider correspondence of cancer mortality in the life table and that in the cancer registry. We realize a novel method to adjust cancer mortality in the cancer registry without any additional information to the standard analyses of cancer registries. Our simulation study revealed that the proposed method successfully removed the bias. We illustrate the proposed method with the cancer registry data in England.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.