Reference standard analysis of multiple new and old plasma clearance models and renal clearance with special attention to measurement of reduced glomerular filtration rate
Auteurs : Carl A. Wesolowski
Résumé : Nine models were evaluated as candidate glomerular filtration rate (GFR) reference standards in three datasets using [$^{51}$Cr(EDTA)]$^-$ or [$^{169}$Yb(DTPA)]$^{2-}$ anions in 98 studies. Noncompartmental methods formed an upper limit for estimating mass excreted and voluntary urine collection formed a lower limit. For current models and methods, reduced GFR in adults resulted in inflated clearance estimates. Two different logarithmic models with exponential tails were created and may have underestimated reduced clearance. The logarithmic formulae can be used with only two plasma samples, and fit 13 studies totalling 162 plasma samples drawn from 5 min to 24 h with an 8% standard deviation of residuals compared to 20% error for monoexponentials. For shorter times (4 or 5 h) the fit errors decreased but the ratio of errors remained at circa 2.5 times lesser for the logarithmic versus monoexponential models. Adaptively regularised gamma variate, Tk-GV, models that are well documented, but not in common use, were largely contained within the reference extreme values, were unbiased for different levels of clearance and were the only models to be uncorrelated to volume of distribution from mean residence time divided by weight. Using Tk-GV as a candidate reference standard, potentially better methods for routine clinical usage were discussed. Prospective clinical testing, and metabolic scaling of decreased renal function is advised for potential changes to patient triage.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.