DARKSIDE: A Heterogeneous RISC-V Compute Cluster for Extreme-Edge On-Chip DNN Inference and Training

Auteurs : Angelo Garofalo, Yvan Tortorella, Matteo Perotti, Luca Valente, Alessandro Nadalini, Luca Benini, Davide Rossi, Francesco Conti

11 pages, 15 figures
Licence : CC BY 4.0

Résumé : On-chip DNN inference and training at the Extreme-Edge (TinyML) impose strict latency, throughput, accuracy and flexibility requirements. Heterogeneous clusters are promising solutions to meet the challenge, combining the flexibility of DSP-enhanced cores with the performance and energy boost of dedicated accelerators. We present DARKSIDE, a System-on-Chip with a heterogeneous cluster of 8 RISC-V cores enhanced with 2-b to 32-b mixed-precision integer arithmetic. To boost performance and efficiency on key compute-intensive Deep Neural Network (DNN) kernels, the cluster is enriched with three digital accelerators: a specialized engine for low-data-reuse depthwise convolution kernels (up to 30 MAC/cycle); a minimal overhead datamover to marshal 1-b to 32-b data on-the-fly; a 16-b floating point Tensor Product Engine (TPE) for tiled matrix-multiplication acceleration. DARKSIDE is implemented in 65nm CMOS technology. The cluster achieves a peak integer performance of 65 GOPS and a peak efficiency of 835 GOPS/W when working on 2-b integer DNN kernels. When targeting floating-point tensor operations, the TPE provides up to 18.2 GFLOPS of performance or 300 GFLOPS/W of efficiency - enough to enable on-chip floating-point training at competitive speed coupled with ultra-low power quantized inference.

Soumis à arXiv le 31 Mar. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.