Tracing and Visualizing Human-ML/AI Collaborative Processes through Artifacts of Data Work
Auteurs : Jennifer Rogers and, Anamaria Crisan
Résumé : Automated Machine Learning (AutoML) technology can lower barriers in data work yet still requires human intervention to be functional. However, the complex and collaborative process resulting from humans and machines trading off work makes it difficult to trace what was done, by whom (or what), and when. In this research, we construct a taxonomy of data work artifacts that captures AutoML and human processes. We present a rigorous methodology for its creation and discuss its transferability to the visual design process. We operationalize the taxonomy through the development of AutoMLTrace, a visual interactive sketch showing both the context and temporality of human-ML/AI collaboration in data work. Finally, we demonstrate the utility of our approach via a usage scenario with an enterprise software development team. Collectively, our research process and findings explore challenges and fruitful avenues for developing data visualization tools that interrogate the sociotechnical relationships in automated data work.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.