A Continued Fraction-Hyperbola based Attack on RSA cryptosystem
Auteurs : Gilda Rech Bansimba, Regis Freguin Babindamana, Basile Guy R. Bossoto
Résumé : In this paper we present new arithmetical and algebraic results following the work of Babindamana and al. on hyperbolas and describe from the new results an approach to attacking a RSA-type modulus based on continued fractions, independent and not bounded by the size of the private key $d$ nor public exponent $e$ compared to Wiener's attack. When successful, this attack is bounded by $\displaystyle\mathcal{O}\left( b\log{\alpha_{j4}}\log{(\alpha_{i3}+\alpha_{j3})}\right)$ with $b=10^{y}$, $\alpha_{i3}+\alpha_{j3}$ a non trivial factor of $n$ and $\alpha_{j4}$ such that $(n+1)/(n-1)=\alpha_{i4}/\alpha_{j4}$. The primary goal of this attack is to find a point $\displaystyle X_{\alpha}=\left(-\alpha_{3}, \ \alpha_{3}+1 \right) \in \mathbb{Z}^{2}_{\star}$ that satisfies $\displaystyle\left\langle X_{\alpha_{3}}, \ P_{3} \right\rangle =0$ from a convergent of $\displaystyle\frac{\alpha_{i4}}{\alpha_{j4}}+\delta$, with $P_{3}\in \mathcal{B}_{n}(x, y)_{\mid_{x\geq 4n}}$. We finally present some experimental examples. We believe these results constitute a new direction in RSA Cryptanalysis using continued fractions.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.