Non-Linear Estimation using the Weighted Average Consensus-Based Unscented Filtering for Various Vehicles Dynamics towards Autonomous Sensorless Design
Auteurs : Bambang L. Widjiantoro, Moh Kamalul Wafi, Katherin Indriawati
Résumé : The concerns to autonomous vehicles have been becoming more intriguing in coping with the more environmentally dynamics non-linear systems under some constraints and disturbances. These vehicles connect not only to the self-instruments yet to the neighborhoods components, making the diverse interconnected communications which should be handled locally to ease the computation and to fasten the decision. To deal with those interconnected networks, the distributed estimation to reach the untouched states, pursuing sensorless design, is approached, initiated by the construction of the modified pseudo measurement which, due to approximation, led to the weighted average consensus calculation within unscented filtering along with the bounded estimation errors. Moreover, the tested vehicles are also associated to certain robust control scenarios subject to noise and disturbance with some stability analysis to ensure the usage of the proposed estimation algorithm. The numerical instances are presented along with the performances of the control and estimation method. The results affirms the effectiveness of the method with limited error deviation compared to the other centralized and distributed filtering. Beyond these, the further research would be the directed sensorless design and fault-tolerant learning control subject to faults to negate the failures.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.