Optimal Asset Allocation in a High Inflation Regime: a Leverage-feasible Neural Network Approach
Auteurs : Chendi Ni, Yuying Li, Peter A. Forsyth
Résumé : We study the optimal multi-period asset allocation problem with leverage constraints in a persistent, high-inflation environment. Based on filtered high-inflation regimes, we discover that a portfolio containing an equal-weighted stock index partially stochastically dominates a portfolio containing a capitalization-weighted stock index. Assuming the asset prices follow the jump diffusion model during high inflation periods, we establish a closed-form solution for the optimal strategy that outperforms a passive strategy under the cumulative quadratic tracking difference (CD) objective. The closed-form solution provides insights but requires unrealistic constraints. To obtain strategies under more practical considerations, we consider a constrained optimal control problem with bounded leverage. To solve this optimal control problem, we propose a novel leverage-feasible neural network (LFNN) model that approximates the optimal control directly. The LFNN model avoids high-dimensional evaluation of the conditional expectation (common in dynamic programming (DP) approaches). We establish mathematically that the LFNN approximation can yield a solution that is arbitrarily close to the solution of the original optimal control problem with bounded leverage. Numerical experiments show that the LFNN model achieves comparable performance to the closed-form solution on simulated data. We apply the LFNN approach to a four-asset investment scenario with bootstrap resampled asset returns. The LFNN strategy consistently outperforms the passive benchmark strategy by about 200 bps (median annualized return), with a greater than 90% probability of outperforming the benchmark at the terminal date. These results suggest that during persistent inflation regimes, investors should favor short-term bonds over long-term bonds, and the equal-weighted stock index over the cap-weighted stock index.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.