ChatGPT-4 Outperforms Experts and Crowd Workers in Annotating Political Twitter Messages with Zero-Shot Learning
Auteurs : Petter Törnberg
Résumé : This paper assesses the accuracy, reliability and bias of the Large Language Model (LLM) ChatGPT-4 on the text analysis task of classifying the political affiliation of a Twitter poster based on the content of a tweet. The LLM is compared to manual annotation by both expert classifiers and crowd workers, generally considered the gold standard for such tasks. We use Twitter messages from United States politicians during the 2020 election, providing a ground truth against which to measure accuracy. The paper finds that ChatGPT-4 has achieves higher accuracy, higher reliability, and equal or lower bias than the human classifiers. The LLM is able to correctly annotate messages that require reasoning on the basis of contextual knowledge, and inferences around the author's intentions - traditionally seen as uniquely human abilities. These findings suggest that LLM will have substantial impact on the use of textual data in the social sciences, by enabling interpretive research at a scale.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.