Segment Everything Everywhere All at Once
Auteurs : Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Gao, Yong Jae Lee
Résumé : Despite the growing demand for interactive AI systems, there have been few comprehensive studies on human-AI interaction in visual understanding e.g. segmentation. Inspired by the development of prompt-based universal interfaces for LLMs, this paper presents SEEM, a promptable, interactive model for Segmenting Everything Everywhere all at once in an image. SEEM has four desiderata: i) Versatility: by introducing a versatile prompting engine for different types of prompts, including points, boxes, scribbles, masks, texts, and referred regions of another image; ii) Compositionality: by learning a joint visual-semantic space for visual and textual prompts to compose queries on the fly for inference as shown in Fig 1; iii)Interactivity: by incorporating learnable memory prompts to retain dialog history information via mask-guided cross-attention; and iv) Semantic-awareness: by using a text encoder to encode text queries and mask labels for open-vocabulary segmentation.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.