Near-Core Acoustic Glitches are Not Oscillatory: Consequences for Asteroseismic Probes of Convective Boundary Mixing
Auteurs : Christopher J. Lindsay, J. M. Joel Ong, Sarbani Basu
Résumé : Asteroseismology has been used extensively in recent years to study the interior structure and physical processes of main sequence stars. We consider prospects for using pressure modes (p-modes) near the frequency of maximum oscillation power to probe the structure of the near-core layers of main sequence stars with convective cores by constructing stellar model tracks. Within our mass range of interest, the inner turning point of p modes as determined by the JWKB approximation evolves in two distinct phases during the main sequence, implying a sudden loss of near-core sensitivity during the discontinuous transition between the two phases. However, we also employ non-JWKB asymptotic analysis to derive a contrasting set of expressions for the effects that these structural properties will have on the mode frequencies, which do not encode any such transition. We show analytically that a sufficiently near-core perturbation to the stellar structure results in non-oscillatory, degree-dependent perturbations to the star's oscillation mode frequencies, contrasting with the case of an outer glitch. We also demonstrate numerically that these near-core acoustic glitches exhibit strong angular degree dependence, even at low degree, agreeing with the non-JWKB analysis, rather than the degree-independent oscillations which emerge from JWKB analyses. These properties have important implications for using p-modes to study near-core mixing processes for intermediate-mass stars on the main sequence, as well as for the interpretation of near-center acoustic glitches in other astrophysical configurations, such as red giants.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.