Saturn's Interior After the Cassini Grand Finale
Auteurs : J. J. Fortney, B. Militzer, C. R. Mankovich, R. Helled, S. M. Wahl, N. Nettelmann, W. B. Hubbard, D. J. Stevenson, L. Iess, M. S. Marley, N. Movshovitz
Résumé : We present a review of Saturn's interior structure and thermal evolution, with a particular focus on work in the past 5 years. Data from the Cassini mission, including a precise determination of the gravity field from the Grand Finale orbits, and the still ongoing identification of ring wave features in Saturn's C-ring tied to seismic modes in the planet, have led to dramatic advances in our understanding of Saturn's structure. Models that match the gravity field suggest that differential rotation, as seen in the visible atmosphere, extends down to at least a depth of 10,000 km (1/6$^{\rm th}$ the planet's radius). At greater depths, a variety of different investigations all now point to a deep Saturn rotation rate of 10 hours and 33 minutes. There is very compelling evidence for a central heavy element concentration (``core''), that in most recent models is 12-20 Earth masses. Ring seismology strongly suggests that the core is not entirely compact, but is dilute (mixed in with the overlying H/He), and has a substantial radial extent, perhaps out to around one-half of the planet's radius. A wide range of thermal evolution scenarios can match the planet's current luminosity, with progress on better quantifying the helium rain scenario hampered by Saturn's poorly known atmospheric helium abundance. We discuss the relevance of magnetic field data on understanding the planet's current interior structure. We point towards additional future work that combines seismology and gravity within a framework that includes differential rotation, and the utility of a Saturn entry probe.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.