Can SAM Count Anything? An Empirical Study on SAM Counting

Auteurs : Zhiheng Ma, Xiaopeng Hong, Qinnan Shangguan

An empirical study on few-shot counting using Meta AI's segment anything model

Résumé : Meta AI recently released the Segment Anything model (SAM), which has garnered attention due to its impressive performance in class-agnostic segmenting. In this study, we explore the use of SAM for the challenging task of few-shot object counting, which involves counting objects of an unseen category by providing a few bounding boxes of examples. We compare SAM's performance with other few-shot counting methods and find that it is currently unsatisfactory without further fine-tuning, particularly for small and crowded objects. Code can be found at \url{https://github.com/Vision-Intelligence-and-Robots-Group/count-anything}.

Soumis à arXiv le 21 Avr. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.