Creating Large Language Model Resistant Exams: Guidelines and Strategies
Auteurs : Simon kaare Larsen
Résumé : The proliferation of Large Language Models (LLMs), such as ChatGPT, has raised concerns about their potential impact on academic integrity, prompting the need for LLM-resistant exam designs. This article investigates the performance of LLMs on exams and their implications for assessment, focusing on ChatGPT's abilities and limitations. We propose guidelines for creating LLM-resistant exams, including content moderation, deliberate inaccuracies, real-world scenarios beyond the model's knowledge base, effective distractor options, evaluating soft skills, and incorporating non-textual information. The article also highlights the significance of adapting assessments to modern tools and promoting essential skills development in students. By adopting these strategies, educators can maintain academic integrity while ensuring that assessments accurately reflect contemporary professional settings and address the challenges and opportunities posed by artificial intelligence in education.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.