Simulation of the Earth's radio leakage from mobile towers as seen from selected nearby stellar systems
Auteurs : Ramiro C. Saide, Michael A. Garrett, Nalini. Heeralall-Issur
Résumé : Mobile communication towers represent a relatively new but growing contributor to the total radio leakage associated with planet Earth. We investigate the overall power contribution of mobile communication towers to the Earth\'s radio leakage budget, as seen from a selection of different nearby stellar systems. We created a model of this leakage using publicly available data of mobile tower locations. The model grids the planet's surface into small, computationally manageable regions, assuming a simple integrated transmission pattern for the mobile antennas. In this model, these mobile tower regions rise and set as the Earth rotates. In this way, a dynamic power spectrum of the Earth was determined, summed over all cellular frequency bands. We calculated this dynamic power spectrum from three different viewing points, HD 95735, Barnard star, and Alpha Centauri A. Our preliminary results demonstrate that the peak power leaking into space from mobile towers is $\sim 4$GW. This is associated with LTE mobile tower technology emanating from the East Coast of China as viewed from HD 95735. We demonstrate that the mobile tower leakage is periodic, direction dependent, and could not currently be detected by a nearby civilization located within 10 light years of the Earth, using instrumentation with a sensitivity similar to the Green Bank Telescope. We plan to extend our model to include more powerful 5G mobile systems, radar installations, ground based uplinks (including the Deep Space Network), and various types of satellite services, including low Earth orbit constellations such as Starlink and OneWeb.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.