ChatGPT in education: A discourse analysis of worries and concerns on social media
Auteurs : Lingyao Li, Zihui Ma, Lizhou Fan, Sanggyu Lee, Huizi Yu, Libby Hemphill
Résumé : The rapid advancements in generative AI models present new opportunities in the education sector. However, it is imperative to acknowledge and address the potential risks and concerns that may arise with their use. We analyzed Twitter data to identify key concerns related to the use of ChatGPT in education. We employed BERT-based topic modeling to conduct a discourse analysis and social network analysis to identify influential users in the conversation. While Twitter users generally ex-pressed a positive attitude towards the use of ChatGPT, their concerns converged to five specific categories: academic integrity, impact on learning outcomes and skill development, limitation of capabilities, policy and social concerns, and workforce challenges. We also found that users from the tech, education, and media fields were often implicated in the conversation, while education and tech individual users led the discussion of concerns. Based on these findings, the study provides several implications for policymakers, tech companies and individuals, educators, and media agencies. In summary, our study underscores the importance of responsible and ethical use of AI in education and highlights the need for collaboration among stakeholders to regulate AI policy.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.