Sparks of Artificial General Recommender (AGR): Early Experiments with ChatGPT

Auteurs : Guo Lin, Yongfeng Zhang

Résumé : This study investigates the feasibility of developing an Artificial General Recommender (AGR), facilitated by recent advancements in Large Language Models (LLMs). An AGR comprises both conversationality and universality to engage in natural dialogues and generate recommendations across various domains. We propose ten fundamental principles that an AGR should adhere to, each with its corresponding testing protocols. We proceed to assess whether ChatGPT, a sophisticated LLM, can comply with the proposed principles by engaging in recommendation-oriented dialogues with the model while observing its behavior. Our findings demonstrate the potential for ChatGPT to serve as an AGR, though several limitations and areas for improvement are identified.

Soumis à arXiv le 08 Mai. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.