Applying Machine Learning Analysis for Software Quality Test

Auteurs : Al Khan, Remudin Reshid Mekuria, Ruslan Isaev

2023 International Conference on Code Quality (ICCQ), IEEE Xplore
16 pages, 5 figures and 14 tables

Résumé : One of the biggest expense in software development is the maintenance. Therefore, it is critical to comprehend what triggers maintenance and if it may be predicted. Numerous research have demonstrated that specific methods of assessing the complexity of created programs may produce useful prediction models to ascertain the possibility of maintenance due to software failures. As a routine it is performed prior to the release, and setting up the models frequently calls for certain, object-oriented software measurements. It is not always the case that software developers have access to these measurements. In this paper, the machine learning is applied on the available data to calculate the cumulative software failure levels. A technique to forecast a software`s residual defectiveness using machine learning can be looked into as a solution to the challenge of predicting residual flaws. Software metrics and defect data were separated out of the static source code repository. Static code is used to create software metrics, and reported bugs in the repository are used to gather defect information. By using a correlation method, metrics that had no connection to the defect data were removed. This makes it possible to analyze all the data without pausing the programming process. Large, sophisticated software`s primary issue is that it is impossible to control everything manually, and the cost of an error can be quite expensive. Developers may miss errors during testing as a consequence, which will raise maintenance costs. Finding a method to accurately forecast software defects is the overall objective.

Soumis à arXiv le 16 Mai. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.