Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt
Auteurs : Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin Tang, Jue Wang, Kaixiong Zhou, Xia Hu, Anshumali Shrivastava
Résumé : Large Language Models (LLMs), armed with billions of parameters, exhibit exceptional performance across a wide range of Natural Language Processing (NLP) tasks. However, they present a significant computational challenge during inference, especially when deploying on common hardware such as single GPUs. As such, minimizing the latency of LLM inference by curtailing computational and memory requirements, though achieved through compression, becomes critically important. However, this process inevitably instigates a trade-off between efficiency and accuracy, as compressed LLMs typically experience a reduction in predictive precision. In this research, we introduce an innovative perspective: to optimize this trade-off, compressed LLMs require a unique input format that varies from that of the original models. Our findings indicate that the generation quality in a compressed LLM can be markedly improved for specific queries by selecting prompts with precision. Capitalizing on this insight, we introduce a prompt learning paradigm that cultivates an additive prompt over a compressed LLM to bolster their accuracy. Our empirical results imply that through our strategic prompt utilization, compressed LLMs can match, and occasionally even exceed, the accuracy of the original models. Moreover, we demonstrated that these learned prompts have a certain degree of transferability across various datasets, tasks, and compression levels. These insights shine a light on new possibilities for enhancing the balance between accuracy and efficiency in LLM inference. Specifically, they underscore the importance of judicious input editing to a compressed large model, hinting at potential advancements in scaling LLMs on common hardware.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.