A Comparative Analysis of Techniques and Algorithms for Recognising Sign Language
Auteurs : Rupesh Kumar (Department of CSE, Galgotias College of Engineering and Technology, AKTU, Greater Noida, 201306, India), Ayush Sinha (Department of CSE, Galgotias College of Engineering and Technology, AKTU, Greater Noida, 201306, India), Ashutosh Bajpai (Department of CSE, Galgotias College of Engineering and Technology, AKTU, Greater Noida, 201306, India), S. K Singh (Department of CSE, Galgotias College of Engineering and Technology, AKTU, Greater Noida, 201306, India)
Résumé : Sign language is a visual language that enhances communication between people and is frequently used as the primary form of communication by people with hearing loss. Even so, not many people with hearing loss use sign language, and they frequently experience social isolation. Therefore, it is necessary to create human-computer interface systems that can offer hearing-impaired people a social platform. Most commercial sign language translation systems now on the market are sensor-based, pricey, and challenging to use. Although vision-based systems are desperately needed, they must first overcome several challenges. Earlier continuous sign language recognition techniques used hidden Markov models, which have a limited ability to include temporal information. To get over these restrictions, several machine learning approaches are being applied to transform hand and sign language motions into spoken or written language. In this study, we compare various deep learning techniques for recognising sign language. Our survey aims to provide a comprehensive overview of the most recent approaches and challenges in this field.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.