Is Information Extraction Solved by ChatGPT? An Analysis of Performance, Evaluation Criteria, Robustness and Errors

Auteurs : Ridong Han, Tao Peng, Chaohao Yang, Benyou Wang, Lu Liu, Xiang Wan

23 pages, version 1.0

Résumé : ChatGPT has stimulated the research boom in the field of large language models. In this paper, we assess the capabilities of ChatGPT from four perspectives including Performance, Evaluation Criteria, Robustness and Error Types. Specifically, we first evaluate ChatGPT's performance on 17 datasets with 14 IE sub-tasks under the zero-shot, few-shot and chain-of-thought scenarios, and find a huge performance gap between ChatGPT and SOTA results. Next, we rethink this gap and propose a soft-matching strategy for evaluation to more accurately reflect ChatGPT's performance. Then, we analyze the robustness of ChatGPT on 14 IE sub-tasks, and find that: 1) ChatGPT rarely outputs invalid responses; 2) Irrelevant context and long-tail target types greatly affect ChatGPT's performance; 3) ChatGPT cannot understand well the subject-object relationships in RE task. Finally, we analyze the errors of ChatGPT, and find that "unannotated spans" is the most dominant error type. This raises concerns about the quality of annotated data, and indicates the possibility of annotating data with ChatGPT. The data and code are released at Github site.

Soumis à arXiv le 23 Mai. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.