GPTAraEval: A Comprehensive Evaluation of ChatGPT on Arabic NLP
Auteurs : Md Tawkat Islam Khondaker, Abdul Waheed, El Moatez Billah Nagoudi, Muhammad Abdul-Mageed
Résumé : ChatGPT's emergence heralds a transformative phase in NLP, particularly demonstrated through its excellent performance on many English benchmarks. However, the model's efficacy across diverse linguistic contexts remains largely uncharted territory. This work aims to bridge this knowledge gap, with a primary focus on assessing ChatGPT's capabilities on Arabic languages and dialectal varieties. Our comprehensive study conducts a large-scale automated and human evaluation of ChatGPT, encompassing 44 distinct language understanding and generation tasks on over 60 different datasets. To our knowledge, this marks the first extensive performance analysis of ChatGPT's deployment in Arabic NLP. Our findings indicate that, despite its remarkable performance in English, ChatGPT is consistently surpassed by smaller models that have undergone finetuning on Arabic. We further undertake a meticulous comparison of ChatGPT and GPT-4's Modern Standard Arabic (MSA) and Dialectal Arabic (DA), unveiling the relative shortcomings of both models in handling Arabic dialects compared to MSA. Although we further explore and confirm the utility of employing GPT-4 as a potential alternative for human evaluation, our work adds to a growing body of research underscoring the limitations of ChatGPT.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.