RestGPT: Connecting Large Language Models with Real-World RESTful APIs
Auteurs : Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, Han Qian, Mingbo Song, Hailiang Huang, Cheng Li, Ke Wang, Rong Yao, Ye Tian, Sujian Li
Résumé : Tool-augmented large language models (LLMs) have achieved remarkable progress in tackling a broad range of tasks. However, existing methods are mainly restricted to specifically designed tools and fail to fulfill complex instructions, having great limitations when confronted with real-world scenarios. In this paper, we explore a more realistic scenario by connecting LLMs with RESTful APIs, which adhere to the widely adopted REST software architectural style for web service development. To address the practical challenges of tackling complex instructions, we propose RestGPT, which exploits the power of LLMs and conducts a coarse-to-fine online planning mechanism to enhance the abilities of task decomposition and API selection. RestGPT also contains an API executor tailored for calling RESTful APIs, which can meticulously formulate parameters and parse API responses. To fully evaluate the performance of RestGPT, we propose RestBench, a high-quality benchmark which consists of two real-world scenarios and human-annotated instructions with gold solution paths. Experiments show that RestGPT is able to achieve impressive results in complex tasks and has strong robustness, which paves a new way towards AGI. RestGPT and RestBench is publicly available at https://restgpt.github.io/.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.