Point spread function modelling for astronomical telescopes: a review focused on weak gravitational lensing studies
Auteurs : Tobias Liaudat, Jean-Luc Starck, Martin Kilbinger, Pierre-Antoine Frugier
Résumé : The accurate modelling of the Point Spread Function (PSF) is of paramount importance in astronomical observations, as it allows for the correction of distortions and blurring caused by the telescope and atmosphere. PSF modelling is crucial for accurately measuring celestial objects' properties. The last decades brought us a steady increase in the power and complexity of astronomical telescopes and instruments. Upcoming galaxy surveys like Euclid and LSST will observe an unprecedented amount and quality of data. Modelling the PSF for these new facilities and surveys requires novel modelling techniques that can cope with the ever-tightening error requirements. The purpose of this review is three-fold. First, we introduce the optical background required for a more physically-motivated PSF modelling and propose an observational model that can be reused for future developments. Second, we provide an overview of the different physical contributors of the PSF, including the optic- and detector-level contributors and the atmosphere. We expect that the overview will help better understand the modelled effects. Third, we discuss the different methods for PSF modelling from the parametric and non-parametric families for ground- and space-based telescopes, with their advantages and limitations. Validation methods for PSF models are then addressed, with several metrics related to weak lensing studies discussed in detail. Finally, we explore current challenges and future directions in PSF modelling for astronomical telescopes.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.