A Markovian Formalism for Active Querying

Auteurs : Sid Ijju

Active Learning, Markov, Inverse Reinforcement Learning, Query
Licence : CC BY 4.0

Résumé : Active learning algorithms have been an integral part of recent advances in artificial intelligence. However, the research in the field is widely varying and lacks an overall organizing leans. We outline a Markovian formalism for the field of active learning and survey the literature to demonstrate the organizing capability of our proposed formalism. Our formalism takes a partially observable Markovian system approach to the active learning process as a whole. We specifically outline how querying, dataset augmentation, reward updates, and other aspects of active learning can be viewed as a transition between meta-states in a Markovian system, and give direction into how other aspects of active learning can fit into our formalism.

Soumis à arXiv le 13 Jui. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.