A Comprehensive Modeling Approach for Crop Yield Forecasts using AI-based Methods and Crop Simulation Models
Auteurs : Renato Luiz de Freitas Cunha, Bruno Silva, Priscilla Barreira Avegliano
Résumé : Numerous solutions for yield estimation are either based on data-driven models, or on crop-simulation models (CSMs). Researchers tend to build data-driven models using nationwide crop information databases provided by agencies such as the USDA. On the opposite side of the spectrum, CSMs require fine data that may be hard to generalize from a handful of fields. In this paper, we propose a comprehensive approach for yield forecasting that combines data-driven solutions, crop simulation models, and model surrogates to support multiple user-profiles and needs when dealing with crop management decision-making. To achieve this goal, we have developed a solution to calibrate CSMs at scale, a surrogate model of a CSM assuring faster execution, and a neural network-based approach that performs efficient risk assessment in such settings. Our data-driven modeling approach outperforms previous works with yield correlation predictions close to 91\%. The crop simulation modeling architecture achieved 6% error; the proposed crop simulation model surrogate performs predictions almost 100 times faster than the adopted crop simulator with similar accuracy levels.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.