Prompt Sapper: A LLM-Empowered Production Tool for Building AI Chains
Auteurs : Yu Cheng, Jieshan Chen, Qing Huang, Zhenchang Xing, Xiwei Xu, Qinghua Lu
Résumé : The emergence of foundation models, such as large language models (LLMs) GPT-4 and text-to-image models DALL-E, has opened up numerous possibilities across various domains. People can now use natural language (i.e. prompts) to communicate with AI to perform tasks. While people can use foundation models through chatbots (e.g., ChatGPT), chat, regardless of the capabilities of the underlying models, is not a production tool for building reusable AI services. APIs like LangChain allow for LLM-based application development but require substantial programming knowledge, thus posing a barrier. To mitigate this, we propose the concept of AI chain and introduce the best principles and practices that have been accumulated in software engineering for decades into AI chain engineering, to systematise AI chain engineering methodology. We also develop a no-code integrated development environment, Prompt Sapper, which embodies these AI chain engineering principles and patterns naturally in the process of building AI chains, thereby improving the performance and quality of AI chains. With Prompt Sapper, AI chain engineers can compose prompt-based AI services on top of foundation models through chat-based requirement analysis and visual programming. Our user study evaluated and demonstrated the efficiency and correctness of Prompt Sapper.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.