ChatGPT as a tool for User Story Quality Evaluation: Trustworthy Out of the Box?
Auteurs : Krishna Ronanki, Beatriz Cabrero-Daniel, Christian Berger
Résumé : In Agile software development, user stories play a vital role in capturing and conveying end-user needs, prioritizing features, and facilitating communication and collaboration within development teams. However, automated methods for evaluating user stories require training in NLP tools and can be time-consuming to develop and integrate. This study explores using ChatGPT for user story quality evaluation and compares its performance with an existing benchmark. Our study shows that ChatGPT's evaluation aligns well with human evaluation, and we propose a ``best of three'' strategy to improve its output stability. We also discuss the concept of trustworthiness in AI and its implications for non-experts using ChatGPT's unprocessed outputs. Our research contributes to understanding the reliability and applicability of AI in user story evaluation and offers recommendations for future research.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.