Safe Navigation in Unstructured Environments by Minimizing Uncertainty in Control and Perception
Auteurs : Junwon Seo, Jungwi Mun, Taekyung Kim
Résumé : Uncertainty in control and perception poses challenges for autonomous vehicle navigation in unstructured environments, leading to navigation failures and potential vehicle damage. This paper introduces a framework that minimizes control and perception uncertainty to ensure safe and reliable navigation. The framework consists of two uncertainty-aware models: a learning-based vehicle dynamics model and a self-supervised traversability estimation model. We train a vehicle dynamics model that can quantify the epistemic uncertainty of the model to perform active exploration, resulting in the efficient collection of training data and effective avoidance of uncertain state-action spaces. In addition, we employ meta-learning to train a traversability cost prediction network. The model can be trained with driving data from a variety of types of terrain, and it can online-adapt based on interaction experiences to reduce the aleatoric uncertainty. Integrating the dynamics model and traversability cost prediction model with a sampling-based model predictive controller allows for optimizing trajectories that avoid uncertain terrains and state-action spaces. Experimental results demonstrate that the proposed method reduces uncertainty in prediction and improves stability in autonomous vehicle navigation in unstructured environments.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.