Improving the Security of Smartwatch Payment with Deep Learning
Auteurs : George Webber
Résumé : Making contactless payments using a smartwatch is increasingly popular, but this payment medium lacks traditional biometric security measures such as facial or fingerprint recognition. In 2022, Sturgess et al. proposed WatchAuth, a system for authenticating smartwatch payments using the physical gesture of reaching towards a payment terminal. While effective, the system requires the user to undergo a burdensome enrolment period to achieve acceptable error levels. In this dissertation, we explore whether applications of deep learning can reduce the number of gestures a user must provide to enrol into an authentication system for smartwatch payment. We firstly construct a deep-learned authentication system that outperforms the current state-of-the-art, including in a scenario where the target user has provided a limited number of gestures. We then develop a regularised autoencoder model for generating synthetic user-specific gestures. We show that using these gestures in training improves classification ability for an authentication system. Through this technique we can reduce the number of gestures required to enrol a user into a WatchAuth-like system without negatively impacting its error rates.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.