Automated Deception Detection from Videos: Using End-to-End Learning Based High-Level Features and Classification Approaches
Auteurs : Laslo Dinges (Neuro-Information Technology Group, Otto-von-Guericke University Magdeburg), Marc-André Fiedler (Neuro-Information Technology Group, Otto-von-Guericke University Magdeburg), Ayoub Al-Hamadi (Neuro-Information Technology Group, Otto-von-Guericke University Magdeburg), Thorsten Hempel (Neuro-Information Technology Group, Otto-von-Guericke University Magdeburg), Ahmed Abdelrahman (Neuro-Information Technology Group, Otto-von-Guericke University Magdeburg), Joachim Weimann (Faculty of Economics and Management, Otto-von-Guericke University Magdeburg), Dmitri Bershadskyy (Faculty of Economics and Management, Otto-von-Guericke University Magdeburg)
Résumé : Deception detection is an interdisciplinary field attracting researchers from psychology, criminology, computer science, and economics. We propose a multimodal approach combining deep learning and discriminative models for automated deception detection. Using video modalities, we employ convolutional end-to-end learning to analyze gaze, head pose, and facial expressions, achieving promising results compared to state-of-the-art methods. Due to limited training data, we also utilize discriminative models for deception detection. Although sequence-to-class approaches are explored, discriminative models outperform them due to data scarcity. Our approach is evaluated on five datasets, including a new Rolling-Dice Experiment motivated by economic factors. Results indicate that facial expressions outperform gaze and head pose, and combining modalities with feature selection enhances detection performance. Differences in expressed features across datasets emphasize the importance of scenario-specific training data and the influence of context on deceptive behavior. Cross-dataset experiments reinforce these findings. Despite the challenges posed by low-stake datasets, including the Rolling-Dice Experiment, deception detection performance exceeds chance levels. Our proposed multimodal approach and comprehensive evaluation shed light on the potential of automating deception detection from video modalities, opening avenues for future research.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.