Explainable AI with counterfactual paths
Auteurs : Bastian Pfeifer, Mateusz Krzyzinski, Hubert Baniecki, Anna Saranti, Andreas Holzinger, Przemyslaw Biecek
Résumé : Explainable AI (XAI) is an increasingly important area of research in machine learning, which in principle aims to make black-box models transparent and interpretable. In this paper, we propose a novel approach to XAI that uses counterfactual paths generated by conditional permutations. Our method provides counterfactual explanations by identifying alternative paths that could have led to different outcomes. The proposed method is particularly suitable for generating explanations based on counterfactual paths in knowledge graphs. By examining hypothetical changes to the input data in the knowledge graph, we can systematically validate the behaviour of the model and examine the features or combination of features that are most important to the model's predictions. Our approach provides a more intuitive and interpretable explanation for the model's behaviour than traditional feature weighting methods and can help identify and mitigate biases in the model.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.