AI-powered Fraud Detection in Decentralized Finance: A Project Life Cycle Perspective

Auteurs : Bingqiao Luo, Zhen Zhang, Qian Wang, Anli Ke, Shengliang Lu, Bingsheng He

38 pages, update references
Licence : CC BY 4.0

Résumé : In recent years, blockchain technology has introduced decentralized finance (DeFi) as an alternative to traditional financial systems. DeFi aims to create a transparent and efficient financial ecosystem using smart contracts and emerging decentralized applications. However, the growing popularity of DeFi has made it a target for fraudulent activities, resulting in losses of billions of dollars due to various types of frauds. To address these issues, researchers have explored the potential of artificial intelligence (AI) approaches to detect such fraudulent activities. Yet, there is a lack of a systematic survey to organize and summarize those existing works and to identify the future research opportunities. In this survey, we provide a systematic taxonomy of various frauds in the DeFi ecosystem, categorized by the different stages of a DeFi project's life cycle: project development, introduction, growth, maturity, and decline. This taxonomy is based on our finding: many frauds have strong correlations in the stage of the DeFi project. According to the taxonomy, we review existing AI-powered detection methods, including statistical modeling, natural language processing and other machine learning techniques, etc. We find that fraud detection in different stages employs distinct types of methods and observe the commendable performance of tree-based and graph-related models in tackling fraud detection tasks. By analyzing the challenges and trends, we present the findings to provide proactive suggestion and guide future research in DeFi fraud detection. We believe that this survey is able to support researchers, practitioners, and regulators in establishing a secure and trustworthy DeFi ecosystem.

Soumis à arXiv le 30 Aoû. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.