LogGPT: Exploring ChatGPT for Log-Based Anomaly Detection

Auteurs : Jiaxing Qi, Shaohan Huang, Zhongzhi Luan, Carol Fung, Hailong Yang, Depei Qian

Licence : CC BY 4.0

Résumé : The increasing volume of log data produced by software-intensive systems makes it impractical to analyze them manually. Many deep learning-based methods have been proposed for log-based anomaly detection. These methods face several challenges such as high-dimensional and noisy log data, class imbalance, generalization, and model interpretability. Recently, ChatGPT has shown promising results in various domains. However, there is still a lack of study on the application of ChatGPT for log-based anomaly detection. In this work, we proposed LogGPT, a log-based anomaly detection framework based on ChatGPT. By leveraging the ChatGPT's language interpretation capabilities, LogGPT aims to explore the transferability of knowledge from large-scale corpora to log-based anomaly detection. We conduct experiments to evaluate the performance of LogGPT and compare it with three deep learning-based methods on BGL and Spirit datasets. LogGPT shows promising results and has good interpretability. This study provides preliminary insights into prompt-based models, such as ChatGPT, for the log-based anomaly detection task.

Soumis à arXiv le 03 Sep. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.