Fortifying gravitational-wave tests of general relativity against astrophysical assumptions

Auteurs : Ethan Payne, Maximiliano Isi, Katerina Chatziioannou, Will M. Farr

20 pages, 11 figures
Licence : CC BY 4.0

Résumé : Most tests of general relativity with gravitational-wave observations rely on inferring the degree to which a signal deviates from general relativity in conjunction with the astrophysical parameters of its source, such as the component masses and spins of a compact binary. Due to features of the signal, measurements of these deviations are often highly correlated with the properties of astrophysical sources. As a consequence, prior assumptions about astrophysical parameters will generally affect the inferred magnitude of the deviations. Incorporating information about the underlying astrophysical population is necessary to avoid biases in the inference of deviations from general relativity. Current tests assume that the astrophysical population follows an unrealistic fiducial prior chosen to ease sampling of the posterior -- for example, a prior flat in component masses -- which is is inconsistent with both astrophysical expectations and the distribution inferred from observations. We propose a framework for fortifying tests of general relativity by simultaneously inferring the astrophysical population using a catalog of detections. Although this method applies broadly, we demonstrate it concretely on massive graviton constraints and parameterized tests of deviations to the post-Newtonian phase coefficients. Using observations from LIGO-Virgo-KAGRA's third observing run, we show that concurrent inference of the astrophysical distribution strengthens constraints and improves overall consistency with general relativity. We provide updated constraints on deviations from the theory, finding that, upon modeling the astrophysical population, the 90\%-credible upper limit on the mass of the graviton improves by $25\%$ to $m_g \leq 9.6 \times 10^{-24}\, \mathrm{eV}/c^2$ and the inferred population-level post-Newtonian deviations move ${\sim} 0.4 \sigma$ closer to zero.

Soumis à arXiv le 08 Sep. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.