ChaTA: Towards an Intelligent Question-Answer Teaching Assistant using Open-Source LLMs
Auteurs : Yann Hicke, Anmol Agarwal, Qianou Ma, Paul Denny
Résumé : To address the challenges of scalable and intelligent question-answering (QA), we introduce an innovative solution that leverages open-source Large Language Models (LLMs) to ensure data privacy. We use models from the LLaMA-2 family and augmentations including retrieval augmented generation (RAG), supervised fine-tuning (SFT), and an alternative to reinforcement learning with human feedback (RLHF). We perform our experiments on a Piazza dataset from an introductory CS course with 10k QA pairs and 1.5k pairs of preferences data and conduct both human evaluations and automatic LLM evaluations on a small subset. We find preliminary evidence that modeling techniques collectively enhance the quality of answers by 33%, and RAG is an impactful addition. This work paves the way for the development of ChaTA, an intelligent QA assistant customizable for courses with an online QA platform.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.