Can AI Serve as a Substitute for Human Subjects in Software Engineering Research?
Auteurs : Marco A. Gerosa, Bianca Trinkenreich, Igor Steinmacher, Anita Sarma
Résumé : Research within sociotechnical domains, such as Software Engineering, fundamentally requires a thorough consideration of the human perspective. However, traditional qualitative data collection methods suffer from challenges related to scale, labor intensity, and the increasing difficulty of participant recruitment. This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI), especially large language models (LLMs) like ChatGPT. We explore the potential of AI-generated synthetic text as an alternative source of qualitative data, by discussing how LLMs can replicate human responses and behaviors in research settings. We examine the application of AI in automating data collection across various methodologies, including persona-based prompting for interviews, multi-persona dialogue for focus groups, and mega-persona responses for surveys. Additionally, we discuss the prospective development of new foundation models aimed at emulating human behavior in observational studies and user evaluations. By simulating human interaction and feedback, these AI models could offer scalable and efficient means of data generation, while providing insights into human attitudes, experiences, and performance. We discuss several open problems and research opportunities to implement this vision and conclude that while AI could augment aspects of data gathering in software engineering research, it cannot replace the nuanced, empathetic understanding inherent in human subjects in some cases, and an integrated approach where both AI and human-generated data coexist will likely yield the most effective outcomes.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.