Can ChatGPT Play the Role of a Teaching Assistant in an Introductory Programming Course?
Auteurs : Anishka, Atharva Mehta, Nipun Gupta, Dhruv Kumar, Pankaj Jalote
Résumé : The emergence of Large language models (LLMs) is expected to have a major impact on education. This paper explores the potential of using ChatGPT, an LLM, as a virtual Teaching Assistant (TA) in an Introductory Programming Course. We evaluate ChatGPT's capabilities by comparing its performance with that of human TAs in some TA functions. The TA functions which we focus on include (1) solving programming assignments, (2) grading student code submissions, and (3) providing feedback to undergraduate students in an introductory programming course. Firstly, we investigate how closely ChatGPT's solutions align with those submitted by students. This analysis goes beyond code correctness and also considers code quality. Secondly, we assess ChatGPT's proficiency in grading student code submissions using a given grading rubric and compare its performance with the grades assigned by human TAs. Thirdly, we analyze the quality and relevance of the feedback provided by ChatGPT. This evaluation considers how well ChatGPT addresses mistakes and offers suggestions for improvement in student solutions from both code correctness and code quality perspectives. We conclude with a discussion on the implications of integrating ChatGPT into computing education for automated grading, personalized learning experiences, and instructional support.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.