Molecular sieve vacuum swing adsorption purification and radon reduction system for gaseous dark matter and rare-event detectors

Auteurs : R. R. Marcelo Gregorio, N. J. C. Spooner, F. Dastgiri, A. C. Ezeribe, G. Lane, A. G. McLean, K. Miuchi, H. Ogawa

arXiv: 2312.07720v2 - DOI (physics.ins-det)
Licence : CC BY 4.0

Résumé : In the field of directional dark matter experiments, SF6 has emerged as an ideal target gas. A critical challenge with this gas, and with other proposed gases, is the effective removal of contaminant gases. This includes radon which produce unwanted background events, but also common pollutants such as water, oxygen, and nitrogen, which can capture ionisation electrons, resulting in loss of detector gas gain over time. We present here a novel molecular sieve (MS) based gas recycling system for the simultaneous removal of both radon and common pollutants from SF6. The apparatus has the additional benefit of minimising gas required in experiments and utilises a Vacuum Swing Adsorption (VSA) technique for continuous, long-term operation. The gas system's capabilities were tested with a 100 L low-pressure SF6 Time Projection Chamber (TPC) detector. For the first time, we present a newly developed low-radioactive MS type 5A. This material was found to emanate radon at 98% less per radon captured compared to commercial counterparts, the lowest known MS emanation at the time of writing. Consequently, the radon activity in the TPC detector was reduced, with an upper limit of less than 7.2 mBq at a 95% confidence level (C.L.). Incorporation of MS types 3A and 4A to absorb common pollutants was found successfully to mitigate against gain deterioration while recycling the target gas.

Soumis à arXiv le 12 Déc. 2023

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.