Integrating AI and Learning Analytics for Data-Driven Pedagogical Decisions and Personalized Interventions in Education
Auteurs : Ramteja Sajja, Yusuf Sermet, David Cwiertny, Ibrahim Demir
Résumé : This research study delves into the conceptualization, development, and deployment of an innovative learning analytics tool, leveraging the capabilities of OpenAI's GPT-4 model. This tool is designed to quantify student engagement, map learning progression, and evaluate the efficacy of diverse instructional strategies within an educational context. Through the analysis of various critical data points such as students' stress levels, curiosity, confusion, agitation, topic preferences, and study methods, the tool offers a rich, multi-dimensional view of the learning environment. Furthermore, it employs Bloom's taxonomy as a framework to gauge the cognitive levels addressed by students' questions, thereby elucidating their learning progression. The information gathered from these measurements can empower educators by providing valuable insights to enhance teaching methodologies, pinpoint potential areas for improvement, and craft personalized interventions for individual students. The study articulates the design intricacies, implementation strategy, and thorough evaluation of the learning analytics tool, underscoring its prospective contributions to enhancing educational outcomes and bolstering student success. Moreover, the practicalities of integrating the tool within existing educational platforms and the requisite robust, secure, and scalable technical infrastructure are addressed. This research opens avenues for harnessing AI's potential in shaping the future of education, facilitating data-driven pedagogical decisions, and ultimately fostering a more conducive, personalized learning environment.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.