Fine-tuning and Utilization Methods of Domain-specific LLMs

Auteurs : Cheonsu Jeong

Licence : CC BY-NC-ND 4.0

Résumé : Recent releases of pre-trained Large Language Models (LLMs) have gained considerable traction, yet research on fine-tuning and employing domain-specific LLMs remains scarce. This study investigates approaches for fine-tuning and leveraging domain-specific LLMs, highlighting trends in LLMs, foundational models, and methods for domain-specific pre-training. Focusing on the financial sector, it details dataset selection, preprocessing, model choice, and considerations crucial for LLM fine-tuning in finance. Addressing the unique characteristics of financial data, the study explores the construction of domain-specific vocabularies and considerations for security and regulatory compliance. In the practical application of LLM fine-tuning, the study outlines the procedure and implementation for generating domain-specific LLMs in finance. Various financial cases, including stock price prediction, sentiment analysis of financial news, automated document processing, research, information extraction, and customer service enhancement, are exemplified. The study explores the potential of LLMs in the financial domain, identifies limitations, and proposes directions for improvement, contributing valuable insights for future research. Ultimately, it advances natural language processing technology in business, suggesting proactive LLM utilization in financial services across industries.

Soumis à arXiv le 01 Jan. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.