Quantum eigenvalue processing
Auteurs : Guang Hao Low, Yuan Su
Résumé : Many problems in linear algebra -- such as those arising from non-Hermitian physics and differential equations -- can be solved on a quantum computer by processing eigenvalues of the non-normal input matrices. However, the existing Quantum Singular Value Transformation (QSVT) framework is ill-suited to this task, as eigenvalues and singular values are different in general. We present a Quantum EigenValue Transformation (QEVT) framework for applying arbitrary polynomial transformations on eigenvalues of block-encoded non-normal operators, and a related Quantum EigenValue Estimation (QEVE) algorithm for operators with real spectra. QEVT has query complexity to the block encoding nearly recovering that of the QSVT for a Hermitian input, and QEVE achieves the Heisenberg-limited scaling for diagonalizable input matrices. As applications, we develop a linear differential equation solver with strictly linear time query complexity for average-case diagonalizable operators, as well as a ground state preparation algorithm that upgrades previous nearly optimal results for Hermitian Hamiltonians to diagonalizable matrices with real spectra. Underpinning our algorithms is an efficient method to prepare a quantum superposition of Faber polynomials, which generalize the nearly-best uniform approximation properties of Chebyshev polynomials to the complex plane. Of independent interest, we also develop techniques to generate $n$ Fourier coefficients with $\mathbf{O}(\mathrm{polylog}(n))$ gates compared to prior approaches with linear cost.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.