An Empirical Study on Usage and Perceptions of LLMs in a Software Engineering Project
Auteurs : Sanka Rasnayaka, Guanlin Wang, Ridwan Shariffdeen, Ganesh Neelakanta Iyer
Résumé : Large Language Models (LLMs) represent a leap in artificial intelligence, excelling in tasks using human language(s). Although the main focus of general-purpose LLMs is not code generation, they have shown promising results in the domain. However, the usefulness of LLMs in an academic software engineering project has not been fully explored yet. In this study, we explore the usefulness of LLMs for 214 students working in teams consisting of up to six members. Notably, in the academic course through which this study is conducted, students were encouraged to integrate LLMs into their development tool-chain, in contrast to most other academic courses that explicitly prohibit the use of LLMs. In this paper, we analyze the AI-generated code, prompts used for code generation, and the human intervention levels to integrate the code into the code base. We also conduct a perception study to gain insights into the perceived usefulness, influencing factors, and future outlook of LLM from a computer science student's perspective. Our findings suggest that LLMs can play a crucial role in the early stages of software development, especially in generating foundational code structures, and helping with syntax and error debugging. These insights provide us with a framework on how to effectively utilize LLMs as a tool to enhance the productivity of software engineering students, and highlight the necessity of shifting the educational focus toward preparing students for successful human-AI collaboration.
Explorez l'arbre d'article
Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel
Recherchez des articles similaires (en version bêta)
En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.