DTS-SQL: Decomposed Text-to-SQL with Small Large Language Models

Auteurs : Mohammadreza Pourreza, Davood Rafiei

Licence : CC BY 4.0

Résumé : Leading models for the text-to-SQL task heavily rely on proprietary Large Language Models (LLMs), posing concerns over data privacy. Closing the performance gap between small open-source models and large proprietary models is crucial to mitigate this reliance. To this end, we introduce a novel two-stage fine-tuning approach that decomposes the task into two simpler tasks. Through comprehensive evaluation on two large cross-domain datasets and two small LLMs, we show that this approach improves execution accuracy by 3 to 7 percent, effectively aligning the performance of open-source models with their proprietary counterparts.

Soumis à arXiv le 02 Fév. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.