Unified View of Grokking, Double Descent and Emergent Abilities: A Perspective from Circuits Competition

Auteurs : Yufei Huang, Shengding Hu, Xu Han, Zhiyuan Liu, Maosong Sun

Licence : CC BY 4.0

Résumé : Recent studies have uncovered intriguing phenomena in deep learning, such as grokking, double descent, and emergent abilities in large language models, which challenge human intuition and are crucial for a deeper understanding of neural models. In this paper, we present a comprehensive framework that provides a unified view of these three phenomena, focusing on the competition between memorization and generalization circuits. This approach, initially employed to explain grokking, is extended in our work to encompass a wider range of model sizes and training data volumes. Our framework delineates four distinct training dynamics, each depending on varying combinations of model size and training data quantity. Utilizing this framework, we provide a detailed analysis of the double descent phenomenon and propose two verifiable predictions regarding its occurrence, both substantiated by our experimental results. Moreover, we expand our framework to the multi-task learning paradigm, demonstrating how algorithm tasks can be turned into emergent abilities. This offers a novel perspective to understand emergent abilities in Large Language Models.

Soumis à arXiv le 23 Fév. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.