Exploration of the polarization angle variability of the Crab Nebula with POLARBEAR and its application to the search for axion-like particles

Auteurs : Shunsuke Adachi, Tylor Adkins, Carlo Baccigalupi, Yuji Chinone, Kevin T. Crowley, Josquin Errard, Giulio Fabbian, Chang Feng, Takuro Fujino, Masaya Hasegawa, Masashi Hazumi, Oliver Jeong, Daisuke Kaneko, Brian Keating, Akito Kusaka, Adrian T. Lee, Anto I. Lonappan, Yuto Minami, Masaaki Murata, Lucio Piccirillo, Christian L. Reichardt, Praween Siritanasak, Jake Spisak, Satoru Takakura, Grant P. Teply, Kyohei Yamada

arXiv: 2403.02096v1 - DOI (astro-ph.CO)
24 pages, 19 figures, 5 tables. Submitted to PRD

Résumé : The Crab Nebula, also known as Tau A, is a polarized astronomical source at millimeter wavelengths. It has been used as a stable light source for polarization angle calibration in millimeter-wave astronomy. However, it is known that its intensity and polarization vary as a function of time at a variety of wavelengths. Thus, it is of interest to verify the stability of the millimeter-wave polarization. If detected, polarization variability may be used to better understand the dynamics of Tau A, and for understanding the validity of Tau~A as a calibrator. One intriguing application of such observation is to use it for the search of axion-light particles (ALPs). Ultralight ALPs couple to photons through a Chern-Simons term, and induce a temporal oscillation in the polarization angle of linearly polarized sources. After assessing a number of systematic errors and testing for internal consistency, we evaluate the variability of the polarization angle of the Crab Nebula using 2015 and 2016 observations with the 150 GHz POLARBEAR instrument. We place a median 95% upper bound of polarization oscillation amplitude $A < 0.065^\circ$ over the oscillation frequencies from $0.75~\mathrm{year}^{-1}$ to $0.66~\mathrm{hour}^{-1}$. Assuming that no sources other than ALP are causing Tau A's polarization angle variation, that the ALP constitutes all the dark matter, and that the ALP field is a stochastic Gaussian field, this bound translates into a median 95% upper bound of ALP-photon coupling $g_{a\gamma\gamma} < 2.16\times10^{-12}\,\mathrm{GeV}^{-1}\times(m_a/10^{-21} \mathrm{eV})$ in the mass range from $9.9\times10^{-23} \mathrm{eV}$ to $7.7\times10^{-19} \mathrm{eV}$. This demonstrates that this type of analysis using bright polarized sources is as competitive as those using the polarization of cosmic microwave background in constraining ALPs.

Soumis à arXiv le 04 Mar. 2024

Explorez l'arbre d'article

Cliquez sur les nœuds de l'arborescence pour être redirigé vers un article donné et accéder à leurs résumés et assistant virtuel

Accédez également à nos Résumés, ou posez des questions sur cet article à notre Assistant IA.

Recherchez des articles similaires (en version bêta)

En cliquant sur le bouton ci-dessus, notre algorithme analysera tous les articles de notre base de données pour trouver le plus proche en fonction du contenu des articles complets et pas seulement des métadonnées. Veuillez noter que cela ne fonctionne que pour les articles pour lesquels nous avons généré des résumés et que vous pouvez le réexécuter de temps en temps pour obtenir un résultat plus précis pendant que notre base de données s'agrandit.